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Abstract. Software bots have attracted increasing interest and popular-
ity in both research and society. Their contributions span automation,
digital twins, game characters with conscious-like behavior, and social
media. However, there is still a lack of intelligent bots that can adapt
to the variability and dynamic nature of digital web environments. Un-
like human users, they have difficulty understanding and exploiting the
affordances across multiple virtual environments.
Despite the hype, bots with human user-like cognition do not currently
exist. Chatbots, for instance, lack situational awareness on the digital
platforms where they operate, preventing them from enacting meaningful
and autonomous intelligent behavior similar to human users.
In this survey, we aim to explore the role of cognitive architectures in
supporting efforts towards engineering software bots with advanced gen-
eral intelligence. We discuss how cognitive architectures can contribute
to creating intelligent software bots. Furthermore, we highlight key ar-
chitectural recommendations for the future development of autonomous,
user-like cognitive bots.

Keywords: software bot · cognitive architecture · cognitive automation.

1 Introduction

Software bots are becoming an integral part of automation and social comput-
ing. Digital platforms, including software ecosystems and cyber-physical systems,
are growing increasingly complex. The complexity of diverse digital systems can
overwhelm even expert human users [1]. In such scenarios, software agents act-
ing as autonomous users can assist in automating human user activities. As a
result, there is a growing interest in augmenting bots into software-intensive busi-
ness, social, or industrial environments for cognitive automation [2]. In Industry
4.0 (I4.0) and digital twins (DTs), software agents are playing a crucial role in
enabling smart factories with higher flexibility, efficiency, and safety [3–5]. Ad-
ditionally, in the service industry, robotic process automation (RPA) leverages
bots to automate business processes [6].
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Software development bots, also known as DevBots, are making their mark in
automated software engineering [7,8]. It has become common to see bots assist-
ing in code review and bug-fixing on platforms like GitHub [8,9]. Wessel et al. [8]
identified 48 bots used for this purpose. From committing code to coordinating
open-source projects, bots are increasingly becoming a part of the software de-
velopment life cycle [8, 9]. Their impact on development can significantly affect
how future digital innovation ecosystems are managed and governed [10–12]. So-
cial platforms and games also serve as environments for social bots and virtual
avatars [13, 14]. Although claims of political intent and the influence of social
bots on social media are exaggerated, bots are also prevalent on social platforms
nowadays [15]. The diverse applications of bots highlight the desiderata and
requirements for advanced cognitive agents [16].

However, the reality falls short of the expectations, and advanced social bots
do not exist today [15, 17]. First, the level of autonomy in industrial software
agents and robotic process automation (RPA) is minimal [18, 19]. Agents of-
ten have architectures that are tightly coupled with specific service platforms.
As a result, bots are designed and optimized for these specific platforms, lim-
iting their adaptability. They lack the ability to autonomously recognize the
variability and then function effectively across diverse web or service environ-
ments. Consequently, they lack a sense of awareness and the ability to adapt to
different contexts. Second, bots have very limited or no autonomy in their be-
havior. Addressing these challenges requires a focus on identifying and resolving
architectural concerns [20–23]. It is important to note that bots in social media,
games, industry, and business use cases may differ, but the software systems
architecture and engineering challenges can span domains [24,25].

Thus, by reviewing and synthesizing existing works, this study aims to ex-
plore two architectural aspects of bots through two research questions. The first
question investigates the role of cognitive architectures in bot behavior, while
the second question examines the strict separation of bots and their operational
environment. In our context, the second question is operationalized by evaluat-
ing user-likeness or similarity. A user-like bot refers to the level of similarity a
bot possesses compared to a human user [26].

The subsequent sections are structured as follows: Section 2 provides the
foundational background on bots and cognition, Section 3 describes the approach
employed in surveying bots, Section 4 presents the evaluated results, Section 5
discusses the implications of the obtained results, and finally, Section 6 concludes
the study.

2 Bots and Cognition

2.1 Software Bots

Software bot, or simply bot, is an umbrella term for diverse software agents [27].
The term is used loosely in domains such as RPA. RPA, robotic process automa-
tion, is an automation approach that employs software bots, sometimes referred
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to as digital workers [6]. RPAs and digital twins utilize various toolsets and
development paradigms from agent-based systems [5, 28].

Lebeuf [29] conducted a comprehensive study proposing a broad definition
and general taxonomy of bots. She defines software bots as interfaces that con-
nect users to software services and describes them as a “new [user] interface
paradigm”. According to this perspective, users can access software services
through a bot, where the user interface takes the form of a conversational in-
terface. The user is typically human, although other programs and systems can
also utilize the bot. Software services, in this context, refer to applications or
digital platforms that provide additional functionalities. While these services are
typically external, they can also be integrated as internal components of the bot.

Furthermore, Lebeuf [29] classifies bots based on their observable properties
and behaviors. The taxonomy defines three dimensions: environment, intrinsic,
and interactions. The environment dimension refers to the software service prop-
erties that bots operate on. Ideally, a software bot is separate from a specific
platform and can operate on multiple platforms. However, most bots are tailored
to a specific platform, such as a Twitter bot. The intrinsic dimension describes
the internal abilities of the bot. Lebeuf also puts anthropomorphism as an in-
trinsic dimension, which specifies if the bot has human user-like features, such
as name, visualization, and persona. The interaction dimension specifies how the
bot accesses and interacts with the environment.

Lebeuf’s taxonomy is based solely on observable properties and does not con-
sider the architectural aspects and components of bots [29]. In our context, the
interaction dimension concerns perception, action, and autonomy, which impact
the system architecture and environment of the bot. Therefore, in this study, we
introduce another term to restrict the scope to bots that are similar to users.

User-like Software Bots Today, the web is an operational environment for
human users and software user agents [26]. Unlike virtual reality environments,
where agents are typically manifested as conscious-like avatars, the web repre-
sents a different kind of mixed-reality environment. In this environment, both
human users and software bots interact, tying virtual elements with real-world
extensions, as exemplified by the Web of Things (WoT) [30–32]. A diverse set of
software agents interact with the web as their environment [29,32].

In this study, we refer to these classes of mixed-reality software agents as user-
like bots [26]. The term user-like implies that these bots exhibit similarities to
human users. User-like bots use graphical user interfaces to perceive and act
within a software service environment. They interact with keyboard and mouse
operations.

As Gibson’s theory of visual perception suggests, perception is not merely
about passive observation; it’s also about actively distinguishing the potential
actions or “affordances” that an environment offers to an agent [33]. The environ-
ment, in this context, presents affordances [34]. Affordances refer to possibilities
for interaction and action [26]. Platform services or features can be analogous
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to affordances in the real world. User-like bots are expected to understand or
perceive these affordances and act on them similar to human users.

While the web is the primary context, a software service environment can
also refer to any desktop application.

2.2 Cognitive Architectures

Research in engineering machine intelligence, particularly Artificial General In-
telligence (AGI), aims to endow software systems with cognitive abilities that
enable machines to think at or beyond the level of humans [23]. To achieve this
goal, efforts to understand the brain from disciplines such as cognitive and neu-
roscience have led to various promising approaches. One such approach is the
study of cognitive architectures, which focuses on designing high-level cognitive
functions [26,35].

Cognitive architectures serve as essential architectural design foundations for
artificial intelligence research. The ultimate objective of cognitive architectures
is to enable software with cognitive abilities equal to or greater than human-like
intelligence. Cognitive architectures can be described as a set of specifications
or theories of cognition that outline the essential structural elements and capa-
bilities of a cognitive system [36, 37]. Metzler and Shea [38] compiled a list of
cognitive functions as components that constitute a cognitive architecture, such
as learning, reasoning, decision-making, perception, planning, and acting.

Cognitive architectures are designed to handle a broader set of cognitive tasks
or cognitive functions. They can enable perpetual learning from the environment,
adapting to changes, and reasoning based on available information. Due to this
universal approach, an agent implementing a cognitive architecture may operate
successively and simultaneously in various applications. While most cognitive
architectures remain theoretical specifications, some, such as ACT-R, LIDA, and
SOAR, have implementations and active communities [36]. Duch et al. [39] have
conducted an in-depth comparison on a technical level of these architectures,
among others.

Fig. 1: Schematic Structure of the Standard Model of Cognition [40].

Currently, efforts are being made in the cognitive modeling research commu-
nity to establish a comprehensive understanding of the architectural assumptions
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that define aspects of human-like cognition, whether natural or artificial [40].
Fig. 1 shows a schematic structure of the Standard Model of Cognition [40].
The Standard Model of Cognition aims to consolidate knowledge from all exist-
ing cognitive architectures and establish a unified understanding of the generic
aspects of cognition, such as perception and motor functions, common to all
cognitive architectures.

2.3 Cognitive Automation

Traditional automation methods and approaches, such as process automation
and RPA, have played crucial roles in automating repetitive tasks and work-
flows [2, 41, 42]. However, as organizations strive for increased agility, efficiency,
and even hyper-automation, the increased complexity of cyber-physical systems
necessitates additional layers of automation, i.e., cognitive automation [2].

Cognitive automation aims to advance the capabilities of traditional automa-
tion and RPA by combining them with other technologies in artificial intelligence.
This integrated approach enables the automation of more complex and cogni-
tive tasks that traditionally require human intervention. Cognitive automation
aims to automate knowledge and service work that involves decision-making,
problem-solving, and other cognitive activities [2, 43]. It focuses on alleviating
the burden of cognitive tasks on humans by automating their roles or enhancing
mixed reality collaborations [2, 42,44].

Similarly, advanced user-like bots or software agents can be employed to
achieve generalizable intelligence or cognitive capabilities on digital platforms
comparable to human users [26]. As autonomous users, software agents can then
assist in automating human user activities. Consequently, one prominent appli-
cation of cognitive automation can be utilizing user-like bots. Bots with gen-
eralizable intelligence, matching human users, are one way to address the aug-
mentation of autonomous digital workers to cyber-physical systems. These bots
can enhance efficiency in various domains, such as RPA, knowledge platforms,
digital twins, and smart factories [5, 26].

3 Research Approach

In this section, we describe the study method and its execution.

3.1 Planning

We conducted a literature review to examine the integration of cognitive archi-
tectures into the engineering of user-like software bots. This approach allows us
to investigate and challenge existing architectural assumptions of software bot
development, which fail to enact meaningful, intelligent behavior. The method
also uses specific criteria to narrow the review’s scope and establish a clear and
replicable methodology. The survey is executed by systematically searching, se-
lecting, and evaluating relevant works.
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3.2 Initial Selection

Initially, we collected various bots, agents, software tools, and personal digital
assistants to get an overview. Since terms such as agent, bot, software bot,
user-agent, and chatbot are interchangeably used in literature, the initial efforts
resulted in an extensive collection of sources. However, this initial process helped
explore and map the software bots already developed throughout all time.

We then limited the collection to the bots that use some form of cognitive
architecture or cognitive model. Furthermore, we determined the search to in-
clude works that distinctively show some similarity to a way a human user would
access and with software service platforms, hence only user-like software bots.

First, we systematically selected relevant works from comprehensive
databases, such as Scopus. To that end, specific keywords, including variations
of “software bot,” “cognitive architecture,” and “user-like or user-agent,” were
devised and conducted. Next, we used forward and backward snowball sam-
pling [45] to find citation chains of relevant studies that claim the development
of bots with cognitive capabilities.

Our initial collection resulted in approximately 190 works. With a closer
look, we found that many were unrelated to the distinct interest. The initial
results are then narrowed to a representative selection of software bots for further
investigation and evaluation.

3.3 Selection and Evaluation Criteria

The representative selection, also called candidates, is evaluated with four essen-
tial selection criteria. The four criteria used to evaluate the selection are derived
to ensure the proper implementation of the interest and objective of the study.
Each candidate bot selected is evaluated against all four criteria and the corre-
sponding sub-criteria. Fig. 2 depicts the four criteria and subcriteria of the first
two: Software Bot and User Similarity.

Fig. 2: Criteria used to evaluate the bots applying cognitive models.

(1) Software bot: this criterion evaluates bot capability. It helps exclude con-
versational interfaces or chatbots that do little or no autonomous action on
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service platforms. The criterion has three subcriteria: a. Automate a Task, b.
Proactive Initiation, and c. External integration. One of the three aspects is the
necessity that the bots automate a task in a digital environment (a. Automate
a Task). In this context, the scope of the environment and the complexity of
the task are neglected. To differentiate the candidate from other programs and
scripts, as a second aspect, independence from the user is required (b. Proac-
tive Initiation). Changes to other elements of the environment, combined with
intrinsic motivations, should trigger the behavior and actions the bot performs.
Indirect reactions to the actions of the user are permitted. For the third aspect,
the candidate bot should operate externally in the targeted digital environment
(c. External integration). Direct integration into the environment, as a fixed part
of a system, is not considered user-like.

(2) User Similarity: Equal to the first criterion, this criterion stems from the
distinction set regarding user-like software bots in Sect. 2. User-like is used to
denote agents who either resemble human users or act on behalf of users. We
focus on drawing a clear distinction between the bots that autonomously enact
user-like behavior and others.

(3) Cognitive Architecture: While claiming the implementation of a cognitive
architecture is relatively easy, its practical application poses a challenge.

(4) Cognitive Abilities: Implementing a cognitive architecture does not nec-
essarily result in cognitive behavior. Consequently, this criterion unites various
aspects regarding a candidate’s cognitive abilities. The list aims at excluding
narrowly set low-level heuristics from the selection while considering the desired
high-level cognitive functions or generalized cognitive capabilities.

4 Results

This section presents the selected agents, personal assistants, and applied cog-
nitive models. Their evaluation is based on the criteria outlined in Sect.3. Fur-
thermore, descriptions of notable selected results from the corresponding review
are provided. Table 1 shows the main results of the software bots analyzed and
evaluated. The entries are ordered by the year of the publication. However, other
arrangements are also feasible. The meaning of the encoded column captions is
provided in Sect. 3.3 and Fig. 2. The elements of the selection cover diverse
research domains. In the following, we highlight the significant bases of the ele-
ments in Table 1. It is worth noting that none of the candidates in the related
publications are described as “user-like software bots” as termed in this study.
They were included because their implicit descriptions in the literature align
with the previously set criteria and guidelines.

4.1 IDA and Virtual Mattie

The agent Virtual Mattie was developed by Franklin et al. in 1996 to perform
clerical tasks related to the organization of seminar schedules [46]. Human semi-
nar organizers are contacted via email. The primary cognitive abilities of Virtual
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Mattie are aimed at understanding the free-form and probably incomplete mes-
sages. While Virtual Mattie implements mechanisms for goals and attention,
the small number of cognitive abilities does not meet the respective criteria. The
other criteria are satisfied.

IDA, the intelligent distribution agent designed by Franklin et al. in 1998 for
the US Navy, is the successor of Virtual Mattie and the predecessor of the cog-
nitive architecture LIDA [65]. The agent assigns new long-term tasks to sailors
who have finished their current ones. A notable feature of the architecture is its
working memory, based on the global workspace theory [66]. In comparison to
Virtual Mattie, IDA possesses more enhanced cognitive abilities. In addition to
decision-making and attention modules, IDA also includes a module for emo-
tions. Due to the communication by email and similar related access to human
coworkers, IDA, at a basic level, satisfies the criteria set that evaluates the sys-
temic architectural perspective of integrating behavior and user similarity.

4.2 The CALO program (CALO, PTIME)

The Cognitive Assistant that Learns and Organizes (CALO) project brought
together researchers from 22 organizations to advance research in cognitive soft-
ware systems by developing a long-lasting, personalized cognitive agent [67]. The
Defense Advanced Research Projects Agency (DARPA) funded it under the Per-
ceptive Assistant that Learns (PAL) program. This project led to the CALO
meeting assistant as well as a variety of related cognitive agents. One example
developed to build on the foundation of CALO is PTIME [56]. With its ability to
reason, plan schedules, and learn user preferences, PTIME meets the cognitive
ability criteria set out in our methodology at a basic level. However, due to the
implementation of the system with a user interface, it lacks the requested user
similarity. The CALO meeting assistant integrates multiple previously developed
cognitive concepts and possesses various cognitive abilities. It is the predecessor
of Apple Siri. Nevertheless, in this study context, such systems are classified as
conversational user interfaces rather than autonomous user agents.

4.3 Lebiere et al. 2015 and Wendt et al. 2018

Cognitive architectures can be directly applied to solve cognitive tasks previously
performed by humans. In Lebiere et al. 2015, the cognitive architecture ACT-R
is used to identify malware tasks [60]. The corresponding model was trained with
historical malware data. While the agent system can perform its task by employ-
ing ACT-R, no other cognitive abilities were apparent. Additionally, the system
must be initiated manually on the data, not meeting the respective criteria.
Wendt et al. 2018 present a cognitive model capable of building energy manage-
ment [63]. To achieve that, they employed the KORE cognitive architecture [64].
The agent is capable of being integrated externally into a building management
interface. It processes data from physical sensors and establishes management
rules based on that data. Like Lebiere et al.’s system, the agent does not employ
all of the cognitive abilities in the criteria. However, some criteria, such as user
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similarity, are satisfied with the active perception of the environment and the
decision-making.

4.4 World of Bits (WoB)

WoB is an experimental learning platform to train software bots in open-domain
web environments [62]. Agents in WoB perceive the web environments in the
form of the Document Object Model (DOM) and rendered pixels. Interestingly,
though benchmark results are low compared to human users, the approach ac-
complished some web tasks by sending mouse and keyboard actions. Further-
more, agents are separated from the environments in which they interact. Tasks
and activities are low-level operations and lack high-level cognitive capabilities.
As a result, it falls short of the evaluation criteria.

5 Discussion

The study’s results have important implications for the field of cognitive ar-
chitectures and user-like software bots. Of the eleven agents and applied cog-
nitive architectures examined in the previous section, Sec.4, only one satisfied
the established criteria. Interestingly, the agent, IDA by Franklin et al. [49], was
developed a little over two decades ago. Except for the first two candidates,
which both precede the year 2000, all the systems featured missed the second
criterion of user similarity. The two systems satisfying the criteria were limited
by their time and would have been implemented as standalone systems if they
had been designed a few years later. Presumably, due to a lack of alternatives,
they both use email to communicate with their environment. This limitation
likely led to them satisfying the user similarity criteria, not necessarily through
the designer’s intent. The trend shown by the other candidates moved towards
applications without user similarity.

5.1 Bots and Cognitive Architectures

One central question arising from the results is the absence of software bots
currently employing cognitive architectures. To the best of our knowledge, it
appears highly unlikely to find an agent or bot in current use that meets all
the criteria established for this study. Despite significant advancements in other
areas of artificial intelligence, the fact that only one bot, IDA by Franklin et
al. [49], satisfied all the criteria suggests that the field of user-like intelligent
bots is still nascent and in its early stages. These findings and observations align
with existing literature, which indicates that integrating cognitive architectures
into software bots is a complex and challenging endeavor [26,68].

However, these results also underscore the potential that cognitive archi-
tectures hold for enhancing the capabilities of software bots. From a simplified
architectural perspective, the example of IDA, which met all the criteria, demon-
strates how a cognitive architecture can enable advanced autonomous behavior
and user similarity in software bots.
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These findings also have practical implications. These findings highlight the
need for developers and researchers to focus their efforts on integrating cognitive
architectures into software bots. For industry professionals, the results can guide
the development of more advanced software bots that align with the requirements
of cognitive automation, enabling more effective automation of various tasks
across different domains.

5.2 Autonomy and Behavior: Architectural Perspectives

The architectural aspects that can address the observed shortcomings in this
study, particularly regarding the level of autonomy and generalized behavior,
can be viewed from two perspectives: the strict separation of bots and their
environment and the integration of a separate behavior model [26].

First, as mentioned earlier, the strict separation of agents and their environ-
ment facilitates architectural possibilities for autonomy [26]. By decoupling bots
from a single environment, they can gain the ability to interact with multiple
environments dynamically, achieving higher levels of variability and adaptability.
This separation also enables the design of software bots with a user-like orien-
tation, treating bots as if they were human users. Consequently, this orientation
opens up possibilities for alternative architectural design patterns, allowing soft-
ware bots with user-like characteristics to seamlessly integrate into existing user
interfaces or operate on digital platforms without the need for APIs or integra-
tion protocols. The separation already places the bots in a position where they
can potentially establish their own intentions, goals, and deliberate interactions,
access, and actions.

Second, an agent’s capacity for self-awareness, contextual awareness, and
other high-level cognitive functions arises from holistic behavior models [26].
These behavior models are typically formulated using cognitive architectures
or similar integrative models and architectures. Consequently, the componenti-
zation and integration of cognitive architectures into the system architecture of
software bots become essential architectural considerations. The scientific under-
standing of machine intelligence, along with related models and principles, is still
evolving and has not yet reached a crystallized state [17]. As a result, models of
intelligent behavior will evolve over time, and older ones may require changes and
modifications. Componentization can facilitate separation and change. Addition-
ally, through this componentization, bots can potentially dynamically integrate
separate behavior models in real-time.

Adopting these architectural perspectives can contribute to addressing the
challenges related to autonomy and generalized behavior in bots, enabling them
to operate with greater flexibility, adaptability, and user-like characteristics.

5.3 Study Limitations

Despite the study’s important findings and insights into integrating cognitive ar-
chitectures into user-like software bots, the study has limitations. The review was
limited to publicly available literature and may not capture all existing software
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bots that employ cognitive architectures. Furthermore, the criteria for evalu-
ating software bots may not encompass all possible features and capabilities.
Future research could expand on our work by investigating databases further,
employing different evaluation criteria, or examining the evolution of cognitive
architectures in software bots over time.

6 Conclusion

The review highlights the importance of developing user-like software bots. These
bots integrate cognitive architectures, enabling advanced autonomous behavior
and user similarity. These requirements have significant implications for the en-
gineering aspects of cognitive bots, particularly in cognitive automation.

Through the analysis of architectural recommendations and perspectives,
this study has provided insights into achieving these goals at a design level. The
distinctive view of bots and their environment, along with the dynamic integra-
tion of componentized behavior models, arise as key approaches to support both
desiderata.

Consequently, implementing these architectural approaches can lead to in-
creased autonomy and adaptability in software bots. This opens up new possi-
bilities for developing autonomous user-like bots that can effectively perform a
wide range of tasks. These findings contribute to the growing understanding of
how to enhance the cognitive capabilities of software bots through architectural
references.
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